



# Technical Data Sheet Plastolyn™ 290LV Hydrocarbon Resin

## **Applications**

- Adhesives/sealants-b&c
- Bookbinding
- · Carpet construction
- Case & carton sealing closings
- Casting wax
- · Commerical printing inks
- Concrete
- · Film modification
- Hygiene adhesives
- · Labels non food contact
- Marine
- · Packaging components non food contact
- Packaging tape
- · Polymer modification
- · Protective coatings
- Roofing
- · Solvent borne packaging adhesives
- Specialty tape
- Tape non food contact
- Tires

## **Key Attributes**

- Color stability
- Low color
- Low organic volatile content
- Made from pure aromatic monomer
- Very high softening point

## **Product Description**

Plastolyn™ 290LV hydrocarbon resin is versatile, aromatic, water white, with very high softening point and very low organic volatile content for use in polymer modification, adhesives, overprint lacquers, coatings and a variety of other applications. Recommended as a flow modifier in such polymers as polyvinylchloride (PVC), acrylonitrile-butadiene-styrene (ABS) and block copolymers. Its water white color and good economy, combined with superior heat and ultraviolet light (UV) stability compared with conventional C9 hydrocarbon resins, provide formulators a new level of quality without sacrificing competitiveness.

# **Typical Properties**

| Property                                    | Test Method | Typical Value, Units |
|---------------------------------------------|-------------|----------------------|
| General                                     |             |                      |
| Ring and Ball Softening Point               | ASTM E 28   | 140 °C               |
| Total Organic Volatile Content <sup>a</sup> |             | <500 ppm             |
| Color, Gardner <sup>d</sup>                 | ASTM D 6166 | <1                   |
| Cloud Point <sup>f</sup>                    |             |                      |
| DACP                                        |             | <-40 °C              |
| MMAP                                        |             | 8 °C                 |
| OMS                                         |             | >180 °C              |
| Molecular Weight <sup>e</sup>               |             |                      |
| $M_n$                                       |             | 1500                 |
| $M_{\rm W}$                                 |             | 3700                 |
| M <sub>w</sub> /M <sub>n</sub>              |             | 2.5                  |
| $M_z$                                       |             | 7300                 |
| Melt Viscosity <sup>b</sup>                 |             |                      |
| 10 poise                                    |             | 230 °C               |
| 100 poise                                   |             | 190 °C               |
| ·                                           |             | 165 °C               |

90 °C

## **Compatibility and Solubility**

Soluble in aromatic and chlorinated hydrocarbons, ketones and ethers. Insoluble in aliphatic hydrocarbons, alcohols and glycols.

## **Packaging**

Pastilles in multi-wall paper bags (50 lbs, 22. 7 kg net wt).

## **Storage**

Due to the thermoplastic behavior, pastillated and flaked resins may fuse, block or lump. This can be accelerated under any of the following conditions: 1) above ambient temperature, 2) prolonged storage, 3) pressure, e.g., stacking pallets, or a combination of these conditions. This is particularly applicable for low softening point resin grades.

In order to maintain the flake or pastille shape, we therefore recommend storing the material in a temperature-controlled area, be careful with stacking material or applying pressure and preventing prolonged storage.

It should be noted that lumping does not have a negative impact on the product specifications. Due to the nature of the product, claims regarding lumping cannot be accepted.

Resins are prone to gradual oxidation, some more so than others. This could result in darkening and/or it could have an adverse effect on the solubility of the resin in organic solvents or on its compatibility with polymers. Accordingly, it is recommended that strict control of inventory be observed at all times, taking care that the oldest material is used first.

Eastman and its marketing affiliates shall not be responsible for the use of this information, or of any product, method, or apparatus mentioned, and you must make your own determination of its suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. No warranty is made of the merchantability of fitness of any product, and nothing herein waives any of the Seller's conditions of sale.

2/28/2018 11:35:39 AM

<sup>&</sup>lt;sup>a</sup>Total volatile content measure by High Performance Liquid Chromatography (HPLC)

<sup>&</sup>lt;sup>b</sup>Data from Plastolyn™ 290, measured by Brookfield RVT viscometer with Thermocel

<sup>&</sup>lt;sup>c</sup>Glass transition temperature by differential scanning calorimetry.

d50% in toluene.

<sup>&</sup>lt;sup>e</sup>Molecular weight, z-average from gel permeation chromatography, elution with THF.

<sup>&</sup>lt;sup>f</sup>Cloud point temperature from 2:1 Vol:Vol aniline-methylcyclohexane, Eastman method.